The human health risk estimation of inhaled oil spill emissions with and without adding dispersant

Click here to view study 

Abstract

Airborne toxic compounds emitted from polluted seawater polluted after an oil spill raise health concerns when inhaled by humans or other species. Inhalation of these toxic compounds as volatile organic compounds (VOCs) or airborne fine particulate matter (PM) may cause serious pulmonary diseases, including lung cancer. Spraying chemical dispersants to enhance distribution of the crude oil into the water was employed extensively during the Deepwater Horizon spill. There is some evidence that dispersion of the crude oil decreased the emission rate of the VOCs but increased the emission rates of fine PM that may carry toxic compounds. In this study, the cancer risks and non-cancer hazards of the detected VOCs and particulates for spill-response workers were estimated with and without use of dispersant under action of breaking waves. A subchronic exposure scenario was modeled to address the inhalation health threat during initial phases of an oil spill response. A dosimetry model was used to estimate regional deposition of PM. Use of dispersant reduced benzene cancer risks from 57 to 37 excess lifetime cancer cases per million for 1 h of daily exposure that continues for 3 months. Adding dispersant resulted in emissions reductions of the lighter VOCs (up to 30% lower). However, hazard quotients (HQs) of the non-carcinogenic VOCs even after dispersant addition were above 1 meaning there are serious concerns about exposure to these VOCs. Inhalation of airborne particles emitted from the slick containing dispersant increased the total mass of deposited particles in upper respiratory regions compared to the slick of crude oil only. This study showed the application of dispersant onto the pollution slick increased the total mass burden to the human respiratory system about 10 times, an exploratory HQ analysis is presented to evaluate the potential health risk.

Share